Using Analytics to Inform Resilient Risk Management of Critical Infrastructure: Jamaica Case Study

Monday, June 13 3:00-4:00 PM (BST) | 10:00 -11:00 AM (ET)

Disaster Risk Financing & Insurance Program

Housekeeping Rules

<u>Reminder</u>

Please keep your camera and microphone off for the entire duration of the event

Post-Event Resources

The session will be recorded. The post-event resources including slides and recording will be sent out after the event concludes.

<u>Q&A</u>

Please share your questions via chat box (If possible, please indicate which speaker(s) to address your question(s))

Agenda

	Welcome and Introduction from the Chair	Olivier Mahul , Practice Manager, Crisis and Disaster Risk Finance, Finance, Competitiveness and Innovation Global Practice, World Bank
	Presentation on WB - OIA work	Shoko Takemoto , Disaster Risk Management Specialist, World Bank Tokyo Disaster Risk Management Hub
	Presentation from OIA	Jim Hall, Professor of Climate and Environmental Risks, University of Oxford
	Presentation from UK CGFI on potential applications for OIA's work	Nicola Ranger, Deputy Director, UK Centre for Greening Finance & Investment and Head of Sustainable Finance Research for Development, Oxford Sustainable Finance Group

Q & A and closing remarks

 \bigcirc

All Participants

Presentation on WB - OIA work

Shoko Takemoto, Disaster Risk Management Specialist, World Bank Tokyo Disaster Risk Management Hub Analytics for Financial Risk Management of Critical Infrastructure in Southeast Asia

Piloting the Next Generation Analytics for Climate-Related Financial Resilience of Critical Infrastructure in Southeast Asia

Using Analytics to Inform Resilient Risk Management of Critical Infrastructure 13 June 2022

Shoko Takemoto Disaster Risk Management Specialist World Bank

\$18 billion

THE WORLD BANK

Annual direct damages from natural hazards to low- and middle-income countries to power generation and transport infrastructure

\$391-\$647 billion

GFDRR

The annual cost of infrastructure disruptions on households and firms in developing countries.

A traffic jam after flooding in Chiangrai, Thailand Source: Hallegatte, Stephane; Rentschler, Jun; Rozenberg, Julie. 2019. Lifelines : The Resilient Infrastructure Opportunity. Sustainable Infrastructure;. Washington, DC: World Bank. © World Bank. https://openknowledge.worldbank.org/handle/10986/31805 License: CC BY 3.0 IGO.

OIA About Summary Infrastructure networks Hazards Roads Rail Electricity

Select layers

- 💋 🗕 Power Grid
- 🗹 🗕 Railways
- 🗹 🗕 Trunk Roads
- Motorways

300km

- 🗹 🗕 Primary Roads
- Secondary Roads
- Tertiary and Other Roads
- 🗹 🔍 Coastal flood depth (m), 100yr
- Fluvial flood depth (m), 100yr
- Coastal flood depth (m)

ò	2.5	5
Fluvial flood	d depth (m)	
ò	2.5	5
Cyclone gue	st speed (m/s)	
ò	25	50
More info	0	
4		•

Link to the pilot platform: https://seasia.infrastructureresilience.org/

ID: 482959027 Total Expected Risk: \$360–1,440 ID: undefined (no exposure calculated)

Indonesia

Lao PDR

Cambodia

Singapore

Analytics for Financial Risk Management of Critical Infrastructure in Southeast Asia:

Scoping & Feasibility Study

Brunei

Ρ

Data Sources and Outputs

The study assembled a number of globally available datasets for SE Asia to be incorporated within the web interface and fed into the analysis.

Data type	Source
Hazards	
Fluvial and coastal flooding	WRI Aqueduct
Cyclones	STORM IBTrACS model
Networks	
Road links	OpenStreetMap + OSRM
Railway tracks	OpenStreetMap
Electricity transmission lines	Gridfinder
Fragility estimates	Koks et al. 2019; Miyamoto et al. 2019; Habermann and Hedel 2018
Socio economic impacts	
People affected	Grided Population Density/Count (WorldPop Population Data)
Economic impact	Gridded GDP per capita (DRYAD Gridded GDP)
Costs	Koks et al. (2019), World Bank ROCKS database; World Bank PPI database .

Outputs within the web interface

- Infrastructure failure probability by infrastructure sector
- Probabilistic estimates of infrastructure damage
 - Expected annual damages (EAD) At asset level
 - Loss-probability distributions At province level: by hazard and sector
- Probabilistic estimates of wider economic losses
 - Expected annual economic losses (EAD) At asset level
 - Loss-probability distributions At province level : by hazard and sector
- CBA of some resilience interventions: retrofit (Vietnam only)

Next Steps

2nd Phase | 2022/2023

- 1. Enhancing the existing criticality risk analysis framework
- 2. Validating risk analysis output for pilot countries
- Further develop the previous Southeast Asia prototype platform

Next Steps

Operational support

Disaster Risk Finance for Resilient Infrastructure Project

Global partnerships APEC-DRFI Working Group

This Study was led by the World Bank Disaster Risk Financing and Insurance Program (DRFIP) and Oxford Infrastructure Analytics with support from the Japan— World Bank Program for Mainstreaming DRM in Developing Countries, which is financed by the Government of Japan and managed by the Global Facility for Disaster Reduction and Recovery (GFDRR) through the Tokyo Disaster Risk Management Hub.

More information

Pilot platform is available at: https://seasia.infrastructureresilience.org/

World Bank Disaster Risk Financing and Insurance Program (DRFIP) https://www.financialprotectionforum.org

Photo: Road reconstruction workers measuring new road site. Kazakhstan. Kubat Sydykov / World Bank Photo ID: KS-KZ002 World Bank

Presentation from OIA

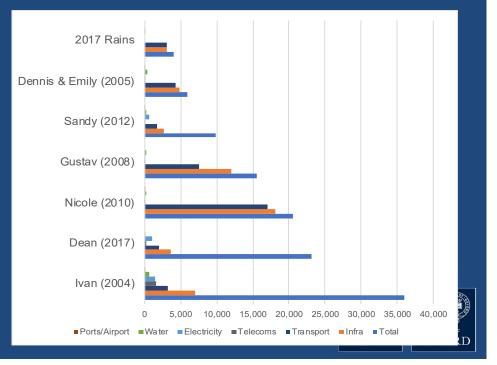
Jim Hall, Professor of Climate and Environmental Risks, University of Oxford

Using Analytics to Inform Resilient Risk Management of Critical Infrastructure: Jamaica Case Study

Jim Hall Oxford Programme for Sustainable Infrastructure Systems University of Oxford

'We cannot handle anymore,' Jamaica member of parliament says after storms Zeta, Eta

BY JACQUELINE CHARLES NOVEMBER 10, 2020 03:53 PM, UPDATED NOVEMBER 11, 2020 07:23 AM



Two tropical storms, Zeta and Eta, has left Jamaica devastated. Many roads and bridges have been washed out, while flooding from swollen rivers continue. Climate change, said Member of Parliament Juliet Holness, is real. BY JAMAICA MEMBER OF PARLIAMENT, ST. ANDREW EAST RURAL, JULIET HOLNESS OFFICE

Prime Minister Andrew Holness @COP26: "A single disaster can set back the development of a small island for years"

- Infrastructure damages contribute between 15 to 90% total damages for the seven largest storms in Jamaica from 2004
- Average annual losses related to hurricanes are over \$J 5 billion
- Highest recorded infrastructure loss (\$J 18 billion) in tropical storm Nicole

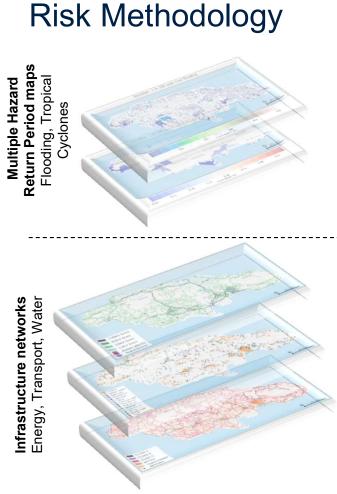
Questions vulnerable countries need to ask

- Where are the **most vulnerable** infrastructure assets **located**?
- How **likely** are **climate hazards, like hurricanes and floods**, to hit those infrastructure assets?
- What are the **direct damages and indirect economic losses** to infrastructures due to climate hazards?
- How might infrastructure **risks change** in the future **due to climate change**?
- What are the **adaptation options** that can **enhance infrastructure resilience** to climate impacts?
- How can **adaptation investments be prioritised to reduce the highest climate risks** to infrastructure assets?

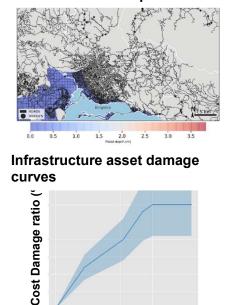
Climate-related risk analytics for transport, energy & water infrastructure in Jamaica The Jamaica Systemic Risk Assessment Tool (J-SRAT) supports climate adaptation decision-making by identifying spatial criticalities and risks under current and future climate scenarios. We focus on:

Transport

Road links and railway lines, ports and airports


Energy

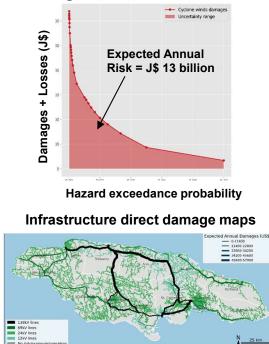
Electricity transmission and distribution: generation, lines, poles and substations


Water

Water supply and wastewater networks, wells and irrigation canals

Supported by: Oxford Programme for Sustainable Infrastructure Systems for the Government of Jamaica (GoJ) Funded by UK Aid (FCDO)

Hazard infrastructure spatial intersections



Hazard intensity

Infrastructure asset economic loss estimates

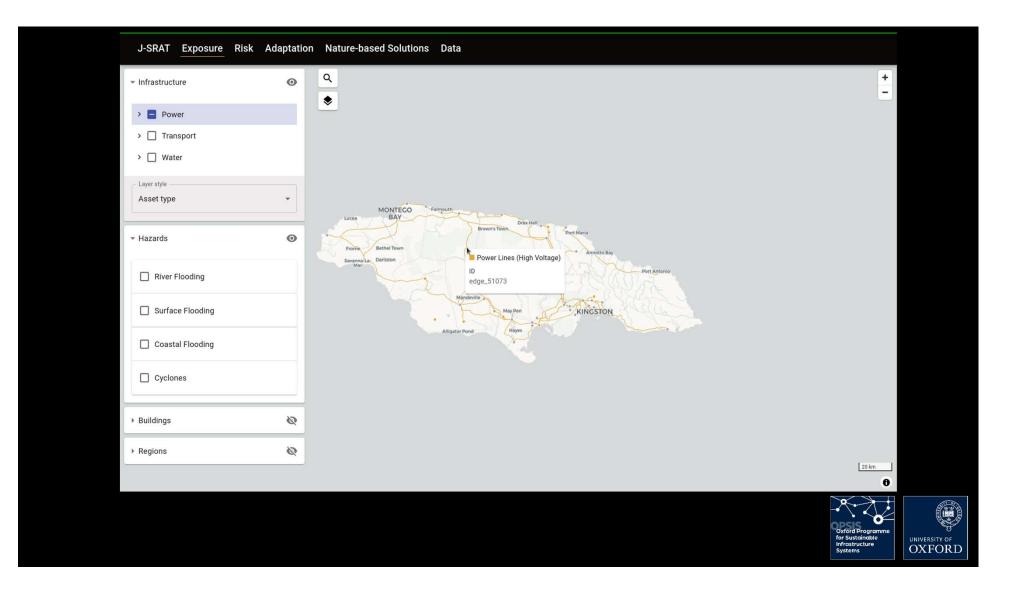
Hazard specific and combined Direct Damage + Indirect Loss Estimates

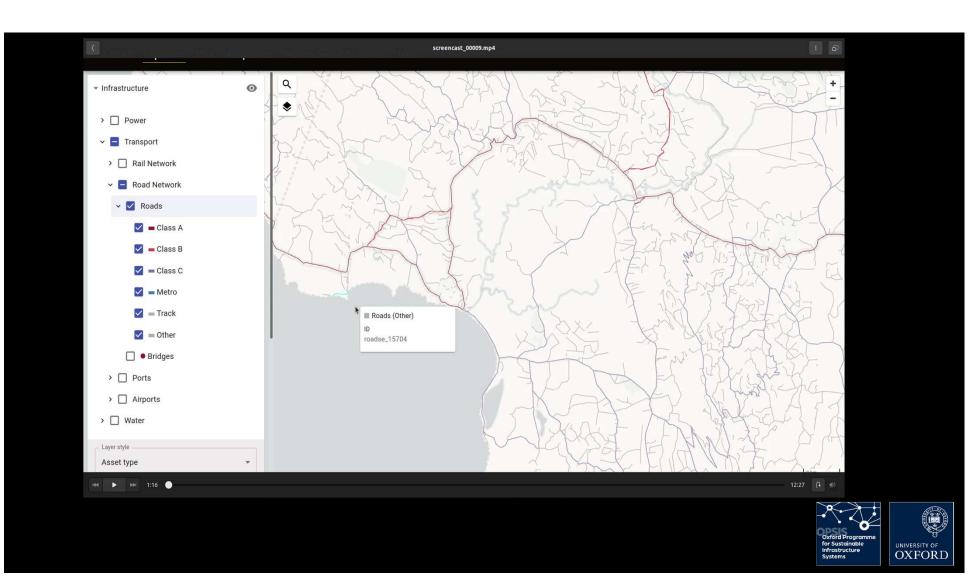
Infrastructure indirect loss maps

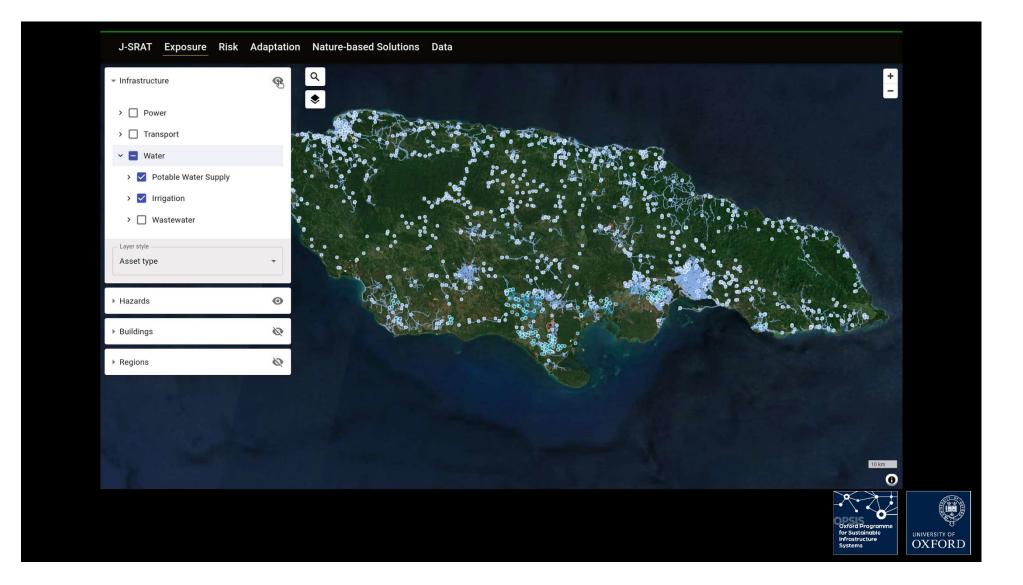
Hazard datasets

All hazard datasets have full coverage over the entire island of Jamaica

Hazard type (data source)	Exceedance Probabilities (1/return periods in years)	Intensities and spatial extents	Climate scenario information
Fluvial (river) and Pluvial flooding (<u>JBA UK global flood map</u> product)	 1/20, 1/50, 1/100, 1/200, 1/500, and 1/1,500 	Flood depths in meters over 30m grid squares .	 RCP 2.6, 4.5 & 8.5 emission scenarios Current + future maps in 2050 and 2080
Coastal flooding (storm surge) (Deltares NL Caribbean product)	1/1, 1/2, 1/5, 1/10, 1/50, 1/100	Flood depths in meters over 90m grid squares .	 RCP 2.6, 4.5 & 8.5 emission scenarios Current + future maps in 2030, 2050, 2070 and 2100
Tropical cyclones (winds) (<u>STORM IBTrACS model</u>)	26 different exceedance probabilities from 1/1 to 1/10000	10 minute sustained maximum wind speeds in m/s at 10km grid squares .	 RCP 4.5 & 8.5 emission scenario Current + future maps in 2050 and 2100
Droughts (REGCM4) (specific to water assets only)	No exceedance probabilities	Daily rainfall and precipitation	• RCP 2.6, 4.5 & 8.5 emission scenario

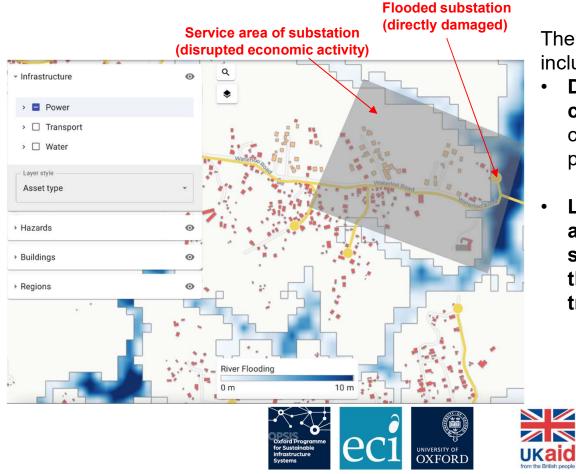





Infrastructure datasets

All infrastructure datasets have full coverage over the entire island of Jamaica

Sector	Sub-sector	Asset highlights	Important failure attributes	Data sources	
Enorgy	Generation	• 9 Power plants	 Damage costs (J\$), Population served GDP disrupted (J\$/day) 	NSDMDJPSMSET	
Energy	Transmission & Distribution	 59 Substations, 30,000 Poles 11,440 kms of overhead lines 	 Damage costs (J\$ or J\$/m) Population served GDP disrupted (J\$/day) 	 OUR OpenStreetMap STATIN 	
	Airports	• 7 airports areas	 Damage costs (J\$/m²), Annual passengers, Annual freight (tonnes) 		
	Ports	13 Port dock areas	 Damage costs (J\$/m²), Annual passengers, Annual freight (tonnes) 	NSDMD NWA	
Transport	Railways	 20 functional stations 201 kms of functional tracks 	 Damage costs (J\$ or J\$/m) Trade flow disruptions (J\$/day) 	NROCC MTM STATIN	
	Roads	 572 bridges 23,200 kms of roads 	 Damage costs (J\$ or J\$/m), Reopening costs (J\$ or J\$/m), Road traffic counts Trade flow disruptions (J\$/day) 		
	Potable water	 1,208 point assets 10,500 kms of pipelines 	 Damage costs (J\$ or J\$/m), Population served GDP disrupted (J\$/day) 	NSDMD	
Water	Irrigation	 178 Wells 248 kms of canals and 220 kms of pipelines 	 Damage costs (J\$ or J\$/m) Agriculture GDP disrupted (J\$/day) 	WRA NWC NIC	
	Wastewater	151 Point assets	• Damage costs (J\$ or J\$/m)	• STATIN	
Buildings	Buildings	• 995,984 buildings	 Damage costs (J\$/m²) GDP disrupted (J\$/day) 	 OpenStreetMap NLA STATIN 	
		orstord Programme for systems Infrastructure systems	GREEN CLIMATE FUND	Climate Resilient Investment	



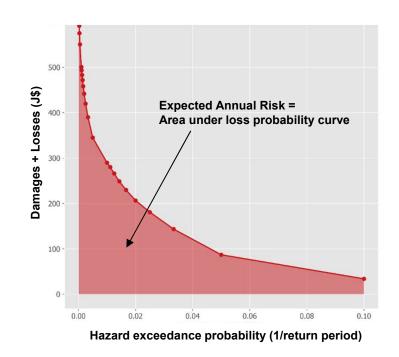
Infrastructure hazard damage possibilities

- The table below shows all instances of types of hazards exposures, which could lead to infrastructure asset damages for the assets considered in Jamaica
- The damages induced on the asset will be a function of the hazard intensity and asset fragility

Sector	Sub-sector	Fluvial, Pluvial and Coastal Flooding	Tropical Cyclone Winds
	Generation & Substations	Y (excluding solar and wind plants)	Y (excluding solar and wind plants)
Energy	Transmission & Distribution Poles and Lines	Ν	Y
	Airports	Y	Y
Tropoport	Ports	Y	Y
Transport	Railways	Y	Ν
	Roads	Y	Ν
	Potable water	Y	Y
Water	Irrigation	Y	Ν
	Wastewater	Y	Ν
	Oxford Programme for Sustainable infrastructure Systems	ec1	GREEN CLIMATE FUND GREEN CLIMATE FUND COalition for Climate Res Investment

SRAT failure metrics

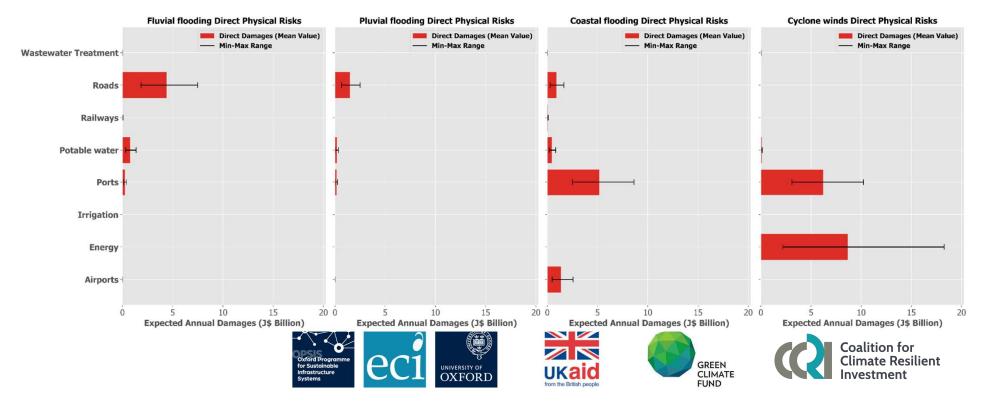
The main failure metrics from the analysis include (shown in the figure):

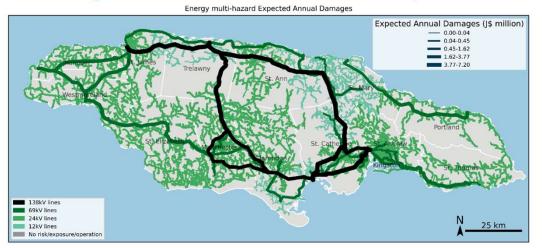

- Damages corresponding to rehabilitation costs associated with replacing assets corresponding to different hazard return periods
- Losses corresponding to GDP/day associated with the buildings using the services of infrastructure assets and the disruption of trade and labor using transport assets.

SRAT output metrics

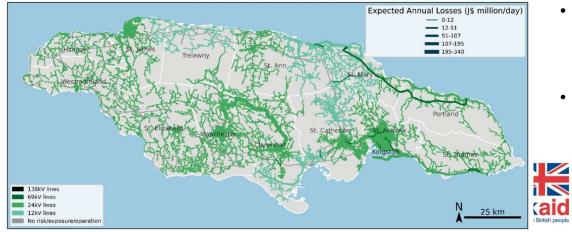
The main output metrics from the analysis include:

- Expected Annual Damages (EAD) (direct physical risks) estimated as the area under the direct damage vs exceedance probability curve
- Expected Annual Economic Losses (EAEL) (indirect economic risks) estimated as the area under the economic loss vs exceedance probability curve



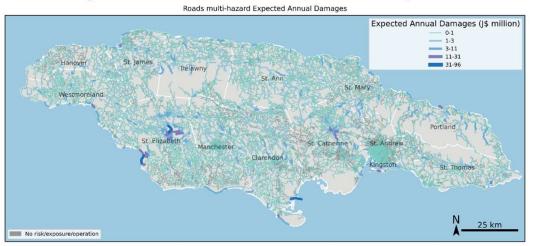

Baseline climate risks – Sector specific direct damage risks

- Roads and potable water assets are most affected by fluvial and pluvial flooding.
- · Ports airports are most affected by coastal flooding
- · Ports and energy assets are most affected by cyclone winds


Observed annual infrastructure damages: J\$2-18billion

Damage and economic disruption: electricity lines

Energy multi-hazard Expected Annual Losses

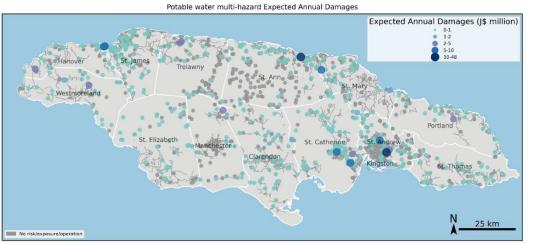


EAD and EAEL map plots here show:

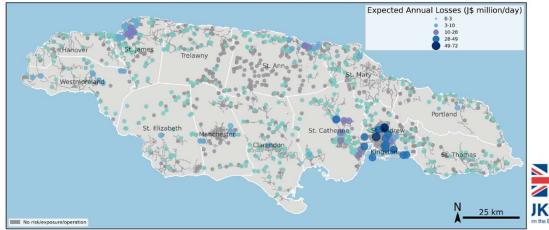
- The locations on electricity lines with the highest annual expected physical damages and economic losses.
- Some electricity lines have physical risks in excess of J\$ 3.7 million, with some as high as J\$ 7.2 million.
- Economic risks due to electricity line failures can be as high as J\$ 195 340 million/day.
- Lines with highest physical risks might not have the highest economic risks.

Damage and economic disruption: Road links

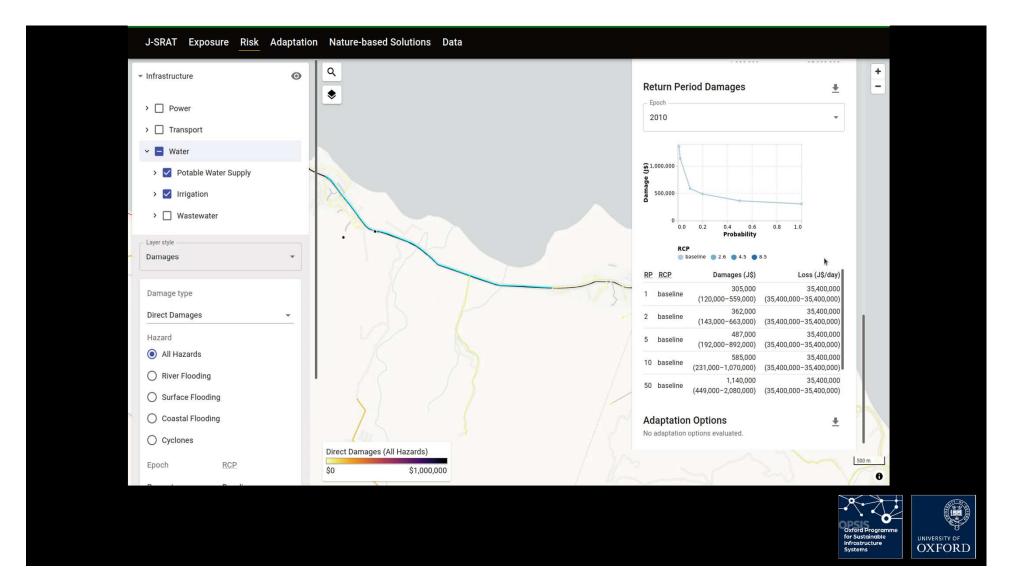
Roads multi-hazard Expected Annual Losses



EAD and EAEL map plots here show:

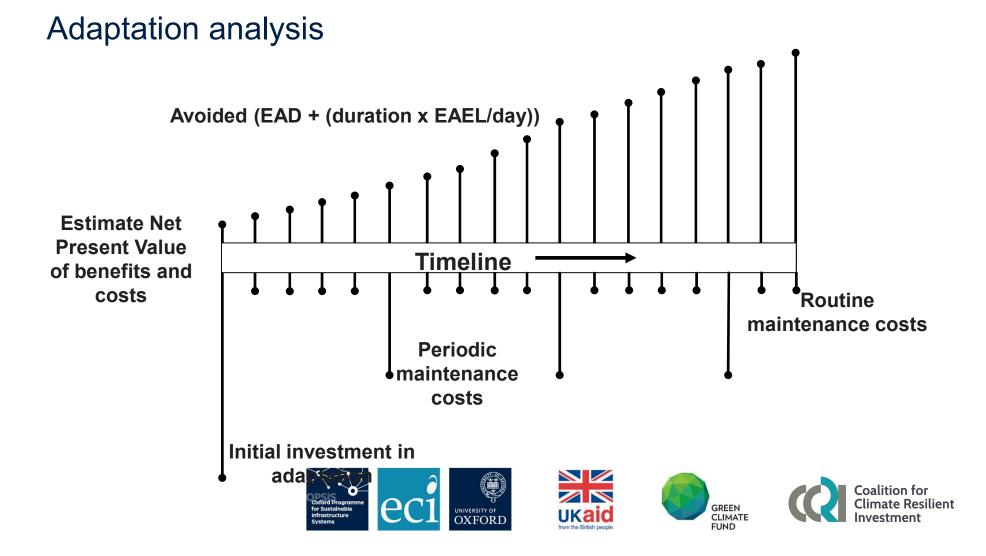

- The locations on roads with the highest annual expected physical damages and economic losses.
- Some road links have physical risks in excess of J\$ 31 million, with some as high as J\$ 96 million.
- Economic risks due to road link failures can be as high as J\$ 118 250 million/day.
- Assets with highest physical risks might not have the highest economic risks.

Damage and economic disruption: Potable water nodes


Potable water multi-hazard Expected Annual Losses

EAD and EAEL map plots here show:

- The locations on potable water nodes with the highest annual expected physical damages and economic losses.
- Some potable water nodes have physical risks in excess of J\$ 10 million, with some as high as J\$ 48 million.
- Economic risks due to potable water node failures can be as high as J\$ 48 72 million/day.
- Assets with highest physical risks might not have the highest economic risks.

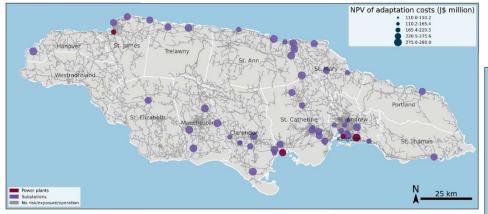


Adaptation metrics

- Costs of adaptation options
 - Initial cost of investment to implement the adaptation options
 - Net Present values of Maintenance costs Recurrent and Periodic
- **Benefits** which include the avoided losses in terms of:
 - Net Present Values of Avoided Expected Annual Damage (EAD)
 - Net Present Values of Avoided Expected Annual Economic loss (EAEL) over an assumed duration of disruption
- Benefit-Cost ratios (BCR) = Benefit/Cost

Adaptation example – Energy assets flood protection

- Two type of adaptation options:
 - **Protection wall:** build a protective flood wall around power plants + substations



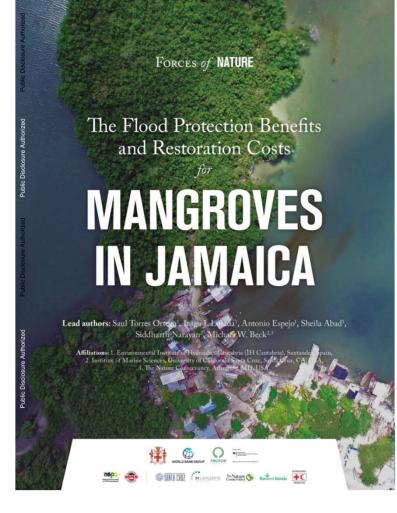
Initial investment cost (for raising wall per m)	Maintenance costs (for raising wall per m)	Discounting rate	Option timeline
105 J\$ million/m	0.5 J\$ million/m/year	10%	2019-2100

Costs and benefits of adaptation: Flood protection of energy assets

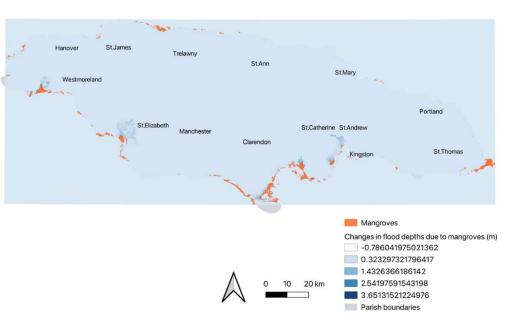
Adaptation Cost

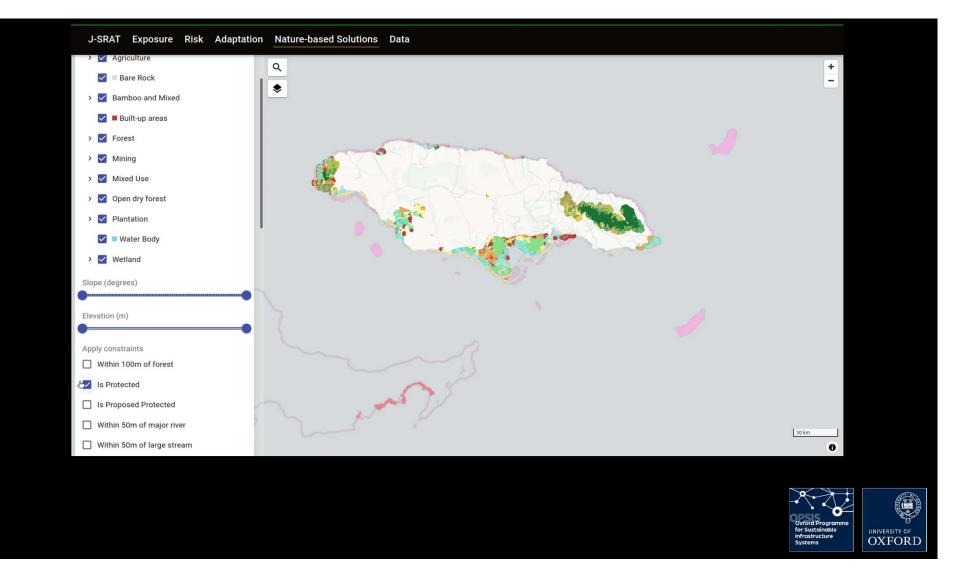
Avoided losses

Benefit Cost Ratios

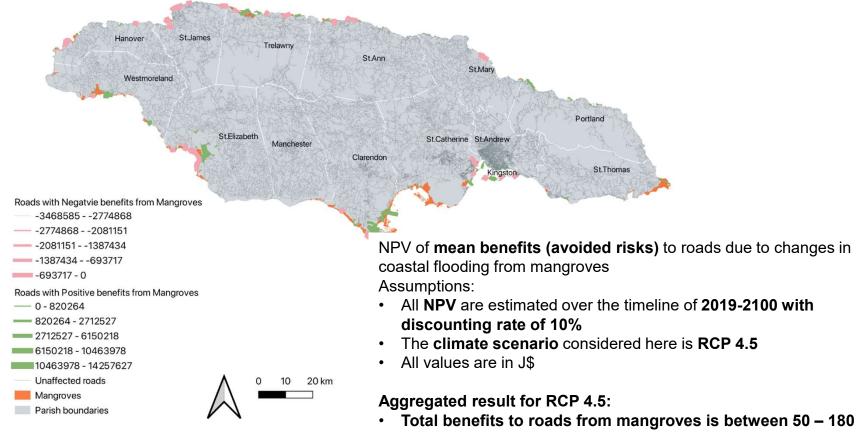


the Adaptation Options selection	Q	-	+
> Power		Adaptation Options	-
> Transport	*	# Cost Benefit Ratio (Building protective wall)	Q
> Water		1 ■ 7.32x	Q
		Power Transmission (Substations)	
Layer style		ID: node_17	
Adaptation Options 👻		Energy intensity (KW/person) 0.0000779	Six
Sector Sub-sector		Rehabilitation cost (J\$) 973,000,000 (584,000,000-1,360,000,000)	al al
Power • Transmission •		Source Edson	
Asset type		EUSOII	
Substation -		2 2.69x	
		3 📕 1.66x	
Adaptation for Hazard RCP		4 0.605x	
Flooding - 4.5 -		5 0.258x	
Adaptation type		6 <mark>–</mark> 0.111x	
Building protective wall		7 <mark>–</mark> 0.0519x	
		8 <mark>-</mark> 0.0488x	
Protection level		9 <mark>0.0224x 9</mark>	
1 1.5 2 2.5		1-20 of 21	< >
Displayed variable	Cost Benefit Ratio (Building		· ·
Cost-Benefit Ratio 👻	protective wall)		Loo terrar da
e 🕨 🕬 8:18 🌑			5:25 👎 📣


Sector Sul	b-sector	Q Adaptation Options	+
Power - T	Transmission 👻	Cost Benefit Ratio (Building protective wall)	1
Asset type		MONTECO Falmouth Drax Hall Brown Stown	Q
Substation -		Port Mana	Zoom in to asset
Adaptation for Hazard RCP		Seven Service Seven Service Seven Se	
	4.5 -	Mandewile May Pen KINCSTON Rehabilitation cost (J\$) 973,000,000 (584,000,000-1,360,000,000)	
Adaptation type Building protective wall		Alligator Pond Hoyes Source Edson	
Protection level		2 ■ 39.7x	
1 1.5	2 2.5	3 ■ 24.2x	
Displayed variable		4 ■ 9.05x	
Cost-Benefit Ratio		5 3 .84x	
The cost-benefit ratio is calculated using		6 <mark>0.131x</mark>	
the following formula: (Avoided Direct Damages + Avoided		7 0 .122x	
Economic Losses * No. of Days) /		8 <mark>=</mark> 0.0985x	
Adaptation Cost No. of Days		9 <mark>=</mark> 0.0947x	
1 5 10 15	20 25 30	1-20 of 21	< >
		Cost Benefit Ratio	
		1x 10x	20 km
Hazards	6		0


J-SRAT Exposure Risk Adaptation Nature-based Solutions Data

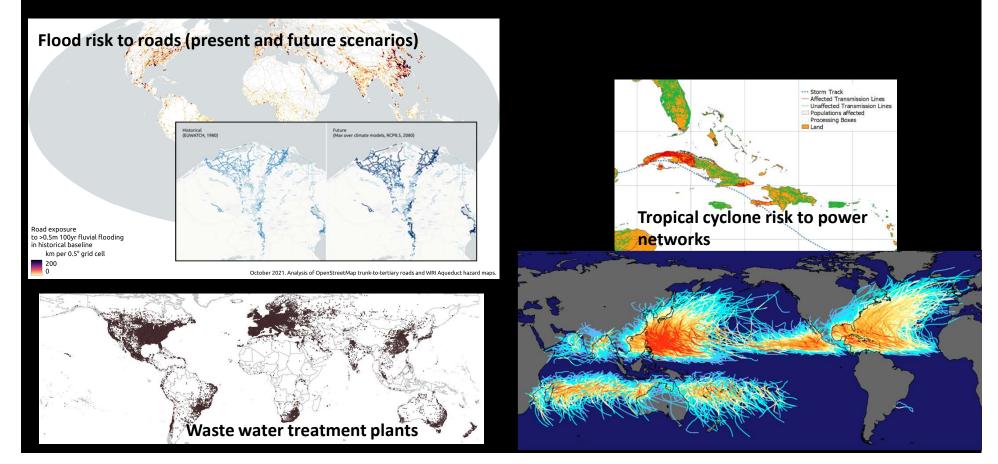
Nature based solutions (NbS) as an Adaptation option

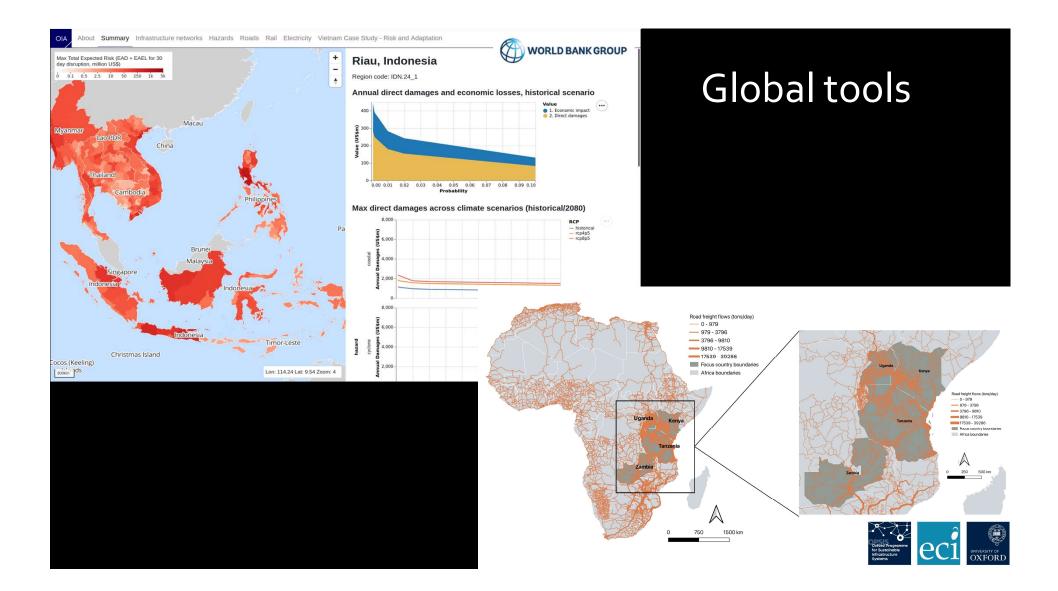


Using a previous study on changes in coastal flood depths and outlines due to mangroves in Jamaica, we have applied similar changes to coastal flood maps in our study. This gives us changing risks due to mangroves.

Nature based solutions (NbS) benefits - Roads

J\$ million with mean estimate of 108 J\$ million




Achievements of J-SRAT

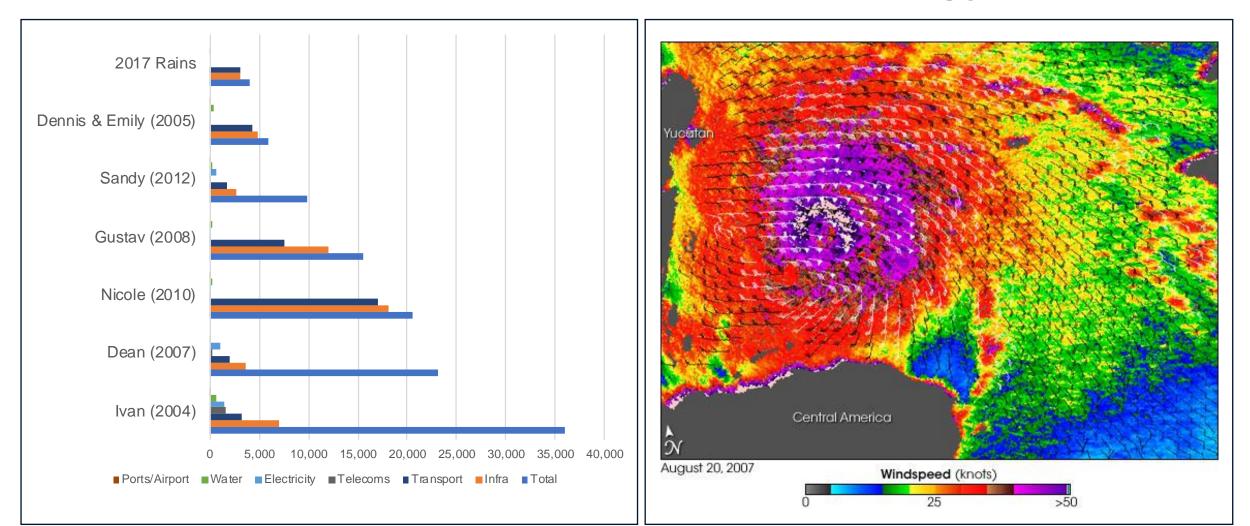
- An extensive database of spatial infrastructure networks and hazards has been created.
- Systemic hazard exposure, vulnerability and physical current and future risks mapping has been done.
- Asset criticality analysis has been done to identify locations on network where risk concentrations are highest.
- A process for incorporating adaptation options and assessing their effectiveness has been developed.

The destination

- Quantified spatial analysis of climate risks to infrastructure networks... everywhere on Earth
- Starter kits for national scale assessment
- Estimates of economic losses in present and future scenarios to drive prioritization and tiered risk management
- Attribution of risk to assets in infrastructure networks... which enables prioritization of resilience in planning and asset management
- Open and accessible data and analysis... to build capacity and democratize decision-making

Acknowledgements

- UK Foreign Commonwealth and Development
 Office
- Planning Institute of Jamaica
- Coalition for Climate Resilient Investments
- Green Climate Fund
- World Bank

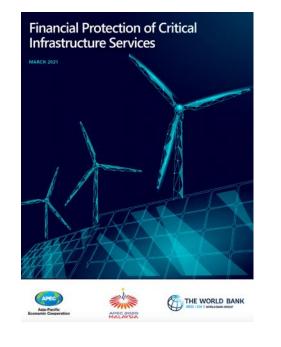


Presentation from UK CGFI on potential applications for OIA's work

Nicola Ranger, Deputy Director, UK Centre for Greening Finance & Investment and Head of Sustainable Finance Research for Development, Oxford Sustainable Finance Group

Quantitative (Results) Verification Methodology

Applications to Disaster Risk Finance(+)


Dr Nicola Ranger UK Centre for Greening Finance and Investment and University of Oxford

What is the value-add of infrastructure analytics for DRF decision making?

Protection Strategy

financial and

FINANCIAL PREPAREDNESS

1. Financial planning for explicit and implicit contingent liabilities related to critical infrastructure 2. Requirements on infrastructure owners and operators

1. Promote

performance-based contracts for infrastructure operators 2. Pre-arrange financing for rapid recovery of services 3. Pre-arrange financing mechanisms for recovery of critical post-disaster mutual assistance 4. Cat Warranty (2019 paper)

Financial protection of physical assets

1. Catastrophe Insurance Programs for Public Assets (2020 paper) 2. Insurance arrangements for private assets

1. Investing and developing quality and resilient infrastructure assets 2. Improving asset management and operations and maintenance 3. Using engineering to understand risk and monitor resilience 4. Quickly responding and repairing assets post disaster

WIDER RESILIENCE

1. Having business

planning and

management

3. Building

system

4. Having

recovery

pre-arranged

contracts and contingency plans for

2. Strengthening

recovery capacity,

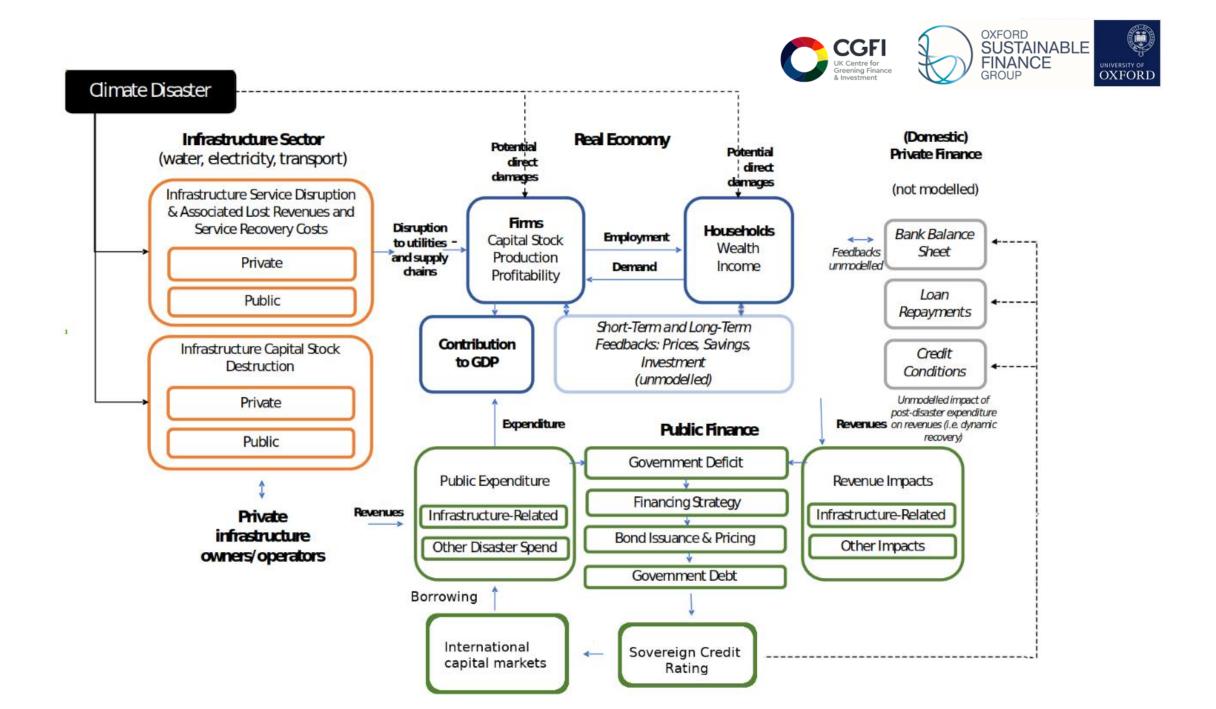
criticality analytics

and risk monitoring

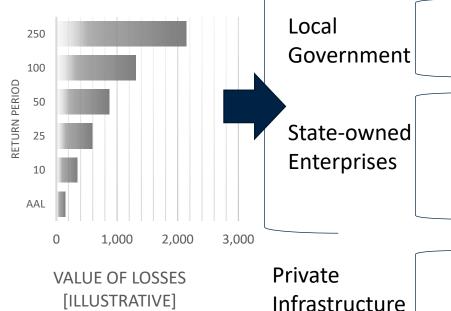
redundancy into the

and service continuity

MEASURES


More comprehensive management of financial risk to government: Enables assessment of the wider contingent liabilities, beyond just the physical asset, and gives a better sense of revenue implications, e.g. water distribution in Jamaica. Helps create clarity on risk ownership and incentives for private sector to better manage risk.

Supports faster recovery of critical


services: Enables estimation of response costs for rapid recovery of critical services (water, power, transport, telecoms) and informs development of preparedness plans

Financial protection & resilient

infrastructure: added information on the costs and benefits of investing in more resilient infrastructure

Providers

& Firms

Households

[ILLUSTRATIVE]

Who owns the risk? Who holds contingent liability?

Who 'creates' the risk? Can risk be reduced? Are there incentives to reduce risk?

Where are the spillovers? Systemic impacts?

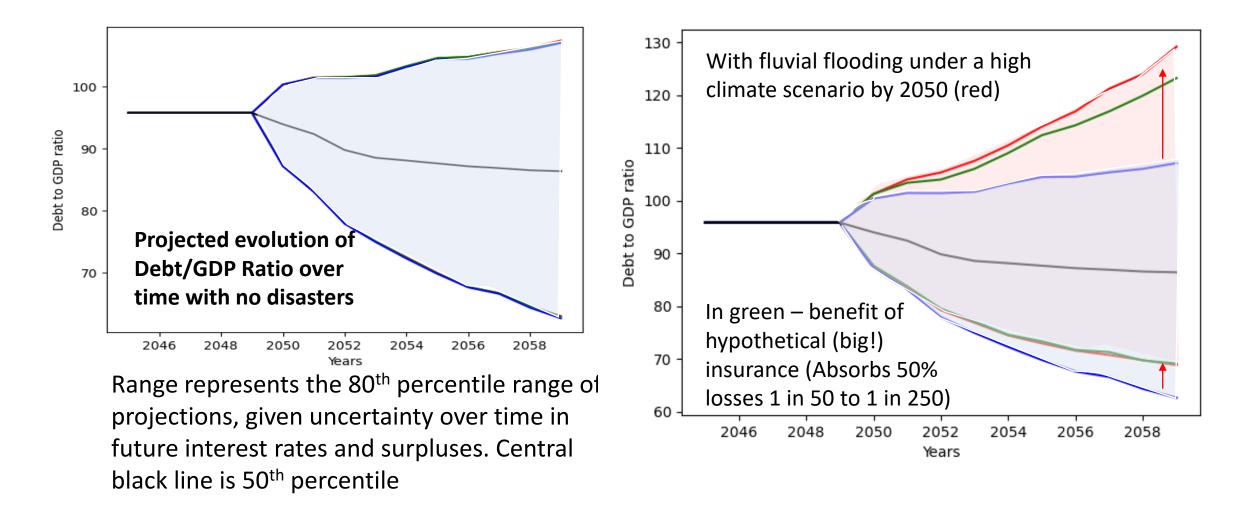
Who benefits from risk reduction?

Who pays? Who absorbs the risk if it is not managed effectively?

Water Sector

OXFORD

GROUP


FINANCE

SUSTAINABLE

OXFORD

When supply fails (e.g., flood has affected treatment plant operations), the utility will pay for water tanker trucks. However, they have a limited capacity and budget. So private vendors come in where the utility tanker trucks are insufficient. The costs to the utility are roughly 100 million \$J per year, but can go up to 300 million \$J. The costs to society are ultimately borne by households and businesses and are very high, as people still must pay their tariffs, as well as the cost of purchasing water.

Infrastructure risk and sovereign debt (and credit ratings)

Valuing Systemic Resilience **Mobilize financing for adaptation**

For investor:

Cost of capital proportionate to expected returns and probability of default

Insurance cost proportionate to probability of loss

Opportunities, e.g. resilience-linked lending products

Non-Resilient Infrastructure Asset

Probability of loss Probability of default

Expected returns

Probability of societal loss Government revenues Government debt 🛖

Resilient Infrastructure Asset

Probability of loss Probability of default Expected returns

Probability of societal loss Government revenues *Government debt*

Can we value and monetize the societal benefit of resilient infrastructure investment?

Monetizing e.g. reduced sovereign and real-economy credit risk? Worth billions to economy!

Climate-related ESG investment? **Resilience-linked** sovereign lending? Bond issuance? **Blended** finance facility?

Please contact us for further information:

Dr Nicola Ranger, nicola.ranger@smithschool.ox.ac.uk

Scan the QR code to join the Disaster Risk Finance Community!

Thank you for your time