THE FISCAL IMPLICATIONS OF HURRICANE STRIKES IN THE CARIBBEAN

B. Ouattara (University of Manchester)

E. Strobl (Ecole Polytechnique)

J. Vermeiren (Kinetic Analysis Corporation)

S. Yearwood (Caribbean Catastrophe Risk Insurance Facility)

- Losses due to tropical storms are estimated to be about \$US 26 billion annually
- Caribbean: extreme weather may cost up to 9% of GDP annually by 2050 (CCRIF, 2014)
- Fiscal sector of Caribbean economies particularly vulnerable because:

(1) limited budget capacity \rightarrow limited financial reserves,

(2) high level of debt \rightarrow limited access to credit

(3) high transaction costs of the small market \rightarrow restricted access to private catastrophe insurance

(4) International aid is too slow to arrive

 \rightarrow Potentially large Liquidity Gap immediately after a natural disaster

- Grenada: Hurricane Ivan (2004)
- Fiscal vulnerability → Creation of the Caribbean Catastrophe Insurance
 Facility (CCRIF)
- CCRIF: multi-country risk pooling, parametric insurance scheme that provides members with 'immediate' fiscal relief when tropical storm occurs
- Since 2007 CCRIF has made payouts for 4 tropical storm events of nearly

\$US 24 million

- Payouts are made according to storm characteristics, country's risk profile, and chosen coverage
- But chosen coverage should be based, amongst other things, on a country's expected fiscal impact, but little empirical evidence of the size of this
- Literature: Lis and Nickel (2009), Melecky and Raddatz (2013), Noy and Nualsri (2011), and Ouattara and Strobl (2013) \rightarrow evidence mixed
- But all use annual data, whereas concerns about liquidity gaps are really with regard to much shorter periods (0-4 months?)

Figure 1: Liquidity Gap

THIS PAPER:

a. Assembles panel of monthly data on fiscal expenditure and revenue for 12 Caribbean countries over the period 2000-2012

b.Estimates the impact of tropical storm damages on the fiscal sector

c. Makes predictions with regard to expected fiscal impact

Government Revenue & Government Expenditure:

- Compiled from a number of sources (Central Banks, Statistical Offices etc.)
- Countries covered (12): Anguilla, Antigua & Barbuda, Bahamas, Barbados,

Dominica, Grenada, Haiti, Jamaica, St. Kitts & Nevis, St. Lucia, Montserrat,

St. Vincent & Grenadines

- Sample period: 2000-2012
- (nearly) balanced panel
- Note: all countries in our sample run a mean monthly budget deficit!

Ex: St. Kitts & Nevis – Fiscal Sector

Tropical Storm Losses:

- Ex-post Damage data: (1) prone with measurement error; (b) likely to introduce endogeneity bias
- We here use "ex-ante" losses from CCRIF's 2G Hazard & Loss Model:
 - a. Divides countries into 30 arc-second pixels & estimates their asset values

b.Uses damage functions & storm characteristics to calculate asset loss for

each pixel due to wind and storm surge

 \rightarrow total asset loss for each island for each tropical storm

	Nr. of Storms	Mean Loss	Max. Loss	
		(% pts of exposure)	(% of pts of exposure)	
ANGUILLA	9	0.19	1.23	
ANTIGUA & BARBUDA	6	0.02	0.11	
BAHAMAS	23	0.04	0.33	
BARBADOS	7	0.05	0.11	
DOMINICA	2	0.08	0.15	
GRENADA	7	0.69	4.23	
ΗΑΙΤΙ	19	0.03	0.13	
JAMAICA	12	0.14	0.47	
ST. KITTS & NEVIS	7	0.03	0.11	
ST. LUCIA	7	0.06	0.14	
MONTSERRAT	6	0.05	0.11	
ST. VINCENT & GRE.	10	0.05	0.12	

ECONOMETRIC METHODOLOGY

Panel VARX specification:

$$y_{i,t} = \sum_{j=1}^{p} \sigma_{ij} y_{i,t-j} + \sum_{k=0}^{s} \xi_{k} x_{i,t-k} + \sum_{i}^{N} \gamma_{i} + \sigma_{i,t}$$

y: endogenous variables (revenue & expenditure); x: exogenous variable (hurricane loss); γ: country specific fixed effects;

 σ : error term

Estimation Method: bias-corrected LSDV (Fomby et al, 2013)

Panel root tests \rightarrow all variables were stationary

AIC and SBC criteria \rightarrow maximum of 12 month lags

Government Revenue

Government Expenditure

Government Capital Expenditure

Government Current Expenditure

Economic Significance

Revenue:

- Average impact of a damaging storm \rightarrow 17.6 per cent of monthly revenue
- Largest observed event over 2000-2012 → 300 per cent of monthly revenue (Hurricane Ivan for Grenada)

Current Expenditure:

- Average impact of a damaging storm → 16.8 per cent of monthly current expenditure
- Largest observed event over 2000-2012 \rightarrow 255 per cent of monthly current expenditure

Government Budget Deficit

Economic Significance

Budget Deficit Increase:

- Average impact of a damaging storm \rightarrow 20.3 per cent of monthly revenue
- Largest observed event over 2000-2012 \rightarrow 347 per cent of monthly revenue

Comparison to CCRIF Payouts

		Budged Deficit	CCRIF Payout
Tropical Cyclone	Anguilla	3,991,048	4,282,733
Earl (2010)			
Tropical Cyclone	Barbados	11,936,235	8,560,247
Thomas (2010)			
Tropical Cyclone	St. Lucia	2,617,366	3,241,613
Thomas (2010)			
Tropical Cyclone	St. Vincent & Gr.	1,782,300	1,090,388
Thomas (2010)			

- A country's choice of policy will depend on its expectations
- Example Country A wants to know the *Return Period* of an event that

causes a 10 per cent budget deficit (relative to monthly revenue):

$$ReturnPeriod = \frac{1}{Pr(damage \ge damage^*)} = ?$$

so that:

 $\frac{\beta_{BudgetDeficit} damage^*}{=} = 0.1$ *revenue*_{damage=0}

- How to estimate Pr(damage ≥ damage*)?
- Hurricanes are relative rare events that take on extreme values \rightarrow heavy tail distributions \rightarrow extreme value distributions

- General approach in the literature: use of a peak over threshold model
- Problem: uncertainty associated with choice of threshold

- Solution: extreme value mixture models
- Parametric Bulk Model (Behrens et al, 2004)

 \odot Gamma Distribution model below the threshold

Generalized Pareto Distribution model above threshold

 \odot Threshold endogenously determined

• But: asymptotic properties still not well understood

Gamma GPD density function

- Estimated the parametric bulk model for each country separately using data from CCRIF Loss model for storms from 1855-2012
- Calculated 1 / Pr(damage ≥ damage*), i.e., the return period of damage*

Return periods:

Country	10%	50%	100%	Country	10%	50%	100%
ANGUILLA	19	45	57	HAITI	11	35	83
	[16, 25]	[41, 54]	[55 <i>,</i> 64]		[10, 13]	[33, 37]	[82 <i>,</i> 86]
ANTIGUA	7	44	166	JAMAICA	13	58	68
& BARBUDA	[7, 9]	[41, 49]	[163, 176]		[12, 15)	[55 <i>,</i> 66)	[55 <i>,</i> 61]
BAHAMAS	12	29	165	ST. KITTS	8	59	165
	[11, 13)	[28, 30)	[163, 168)	& NEVIS	[7, 9)	[55 <i>,</i> 65)	[163, 178)
BARBADOS	10	60	86	ST. LUCIA	11	171	186
	[9, 11)	[55 <i>,</i> 74)	[82 <i>,</i> 97]		[10, 14)	[163, 221)	[163, 205)
DOMINICA	31	58	85	MONTSERRAT	45	57	67
	[28, 48]	[55 <i>,</i> 81]	[82, 110]		[42, 83]	[55 <i>,</i> 98]	[55 <i>,</i> 98]
GRENADA	15	85	168	ST. VINCENT	10	168	174
	[13, 16]	[82, 107]	[163, 215]	& GRENADINES	[8, 12]	[163, 193]	[163, 182]

CONCLUSION

• Estimated the impact of hurricane strikes on the fiscal gap of Caribbean

countries

• Found this to be potentially sizeable

Future Research:

- Advantages of Risk Pooling? Should other countries join?
- Budget Reallocation?